Modelling of the complex signals and processing them with the linear and non-linear methods Oleg Kharshiladze Iv. Javakishvili Tbilisi State University

Week	Tasks/Topics	Study Material
#		
1	General characterization of signals.	[1,7]
	The notion of a signal. Classification of signals. General	
	characteristics of signals.	
2	Modeling signals.	[1,8]
	Generate regular and random signals. Modeling practical	
	problems.	
3	Noise and its types.	[2,4]
	Noise in physical processes. Modelling noise. Flicker Noise. Noise colours. White noise.	
4	Preliminary statistical processing of signals.	[8]
-	Building histograms. Calculating probability density function.	
	Calculating cumulative distribution function. Basic statistical	
	characteristics of signals.	
5	Correlation analysis of signals.	[1,8]
	Covariance and correlation functions. Correlation characteristics	
	of random signals and their calculation. Examples.	
6	Spectral analysis of signals.	[4]
1	Fourier transform of a signal. Continuous and discrete Fourier-	
	transform. Inverse Fourier transform. Examples. Building	
	spectrograms. Windowed Fourier-Transform. Calculating power	
	spectrum of a signal.	
7	Wavelet analysis of signals.	[9]
	General characterization of wavelet functions. Waveletseries	
	expansion for signals. Energy features of signals. Wavelet	
	spectrograms and the wavelet diagrams of signals, scalogram.	
	Plotting wavelet coefficients.	
8	Generating and processing chaotic signals.	[1,3,5]
	General characteristics of deterministic chaos. Generating chaotic	
	signals by logistic map. Chaotic signals in the Lorenz system.	
	Identification and processing of chaotic signals. Practical	
0	examples.	[5 10]
9	Fractal and multifractal analysis of signals.	[5,10]

45 hours: 15 lectures (in total 30 hours), 15 Seminars (in total 15 hours)

	Definitions of fractal and multifractal. Fractality of signals. Methods for calculating fractal dimension. <i>Hausdorff–Besicovitch</i> <i>and Renyi</i> dimensions. Multifractal analysis examples.	
10	Correlation dimension of signals. Attractor and construction of its correlational dimension. Reconstruction of an attractor. Methods for reconstructing dynamic systems from time series.	[7]
11-12	Lyapunov exponents for time series and their interpretation. Methods of computing Lyapunov exponents for dynamical system of equations and for time series.	[1,4,8]
13-15	Entropy in data analysis. Statistical notion of entropy. Entropy and information in time series. Principle of maximum entropy. Methods of calculating entropy and Shannon information. R/S analysis. Hurst's empirical law. Hurst exponent and methods of its calculation.	[3,4,8]

Literature:

- [1] H.G. Schuster, Deterministic Chaos, 2nd Edition, Physik-Verlag (1995).
- [2] F. Moon. Chaotic Vibration, Wiley: N.Y., 1987.
- [3] P.G. Drazin, Nonlinear Systems, Cambridge University Press (1992).
- [4] A.J. Lichtenberg and M.A. Lieberman, Regular and Chaotic Dynamics, 2ndEdition, Springer-Verlag (1994).
- [5] S. H. Strogatz, Nonlinear Dynamics and Chaos: With Applications to Physics, Biology, Chemistry and Engineering, Addison-Wesley, 1994.
- [6] T. Tel and M. Gruiz, Chaotic Dynamics, Cambridge University Press, 2006.
- [7] H. Stark and J.W. Woods, Probability and Random Processes with Application to Signal Processing Prentice Hall 2002.
- [8] Vinay K. Ingle and John G. Proakis: Digital Signal Processing Using MATLAB, Brooks/Cole/Thomson Learning, 2001.
- [9] C. Chui, An Introduction to Wavelets, Ac. Press, 2001.
- [10] J. Feder, Fractals, SpringerScience, 1989.